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In the solution of certain problems of elasticity theory dealing with 
axially symmetric deformations of bodies of revolution, use is made of 
analytic functions of a complex variable. One utilizes Weber’s [ 1 I idea 
on the transformation of Airy’s function into the stress function of an 

axially symmetrically-stressed body of revolution. 

1. In case the deformation is symmetric with respect to the y-axis, 
the components of stress and of the elastic displacement in terms of 
cylindrical coordinates r, 8, y, are expressed, as is well known, by the 
following formulas: 

Here v is Poisson’s ratio. E is Young’s modulus and u is the radial 
displacement. 

The function #r, y) satisfies the biharmonic equation 

Let us introduce the operations S, and S, by setting 

co 03 
SO (cp) = + \ da s ‘p (A, y) ahJo (ah) cos a rtdk = w (rt, y) 

0 0 

fco 9” 

S1 (+) = T s da \ + (A, y) ahJl (ah) sin artd). = w1 (rt, y) 

0 0” 

(1.3) 

(1.4) 
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Here JR(t) is a Bessel function of the first kind. 

Let us find the operations SO” and SF’ which are the inverses 
and SI. We multiply Equation (1.3) by dt/dl - t2 and carry out an 
gration over the interval (-15 1). We thus obtain 

‘p (A, y) k, (d.) Jo (ar) dA = ‘P (r, y) = So-l (w) 

The last step was accomplished with the aid of Hankel’s formula 
the assumption that the function $(r, y) satisfies, for example. 
Dirichlet’s conditions and that it is continuous in r at the point 

Yl. In an analogous manner we obtain 

l tw1 (rt, Y) 
4JIrs Y) = \ -r/l dr 

-1 

Betting rt = .., we note that 

a’p l are, tdt law - 
-= -==- 
ar s ax VI-P s 

zd r/l -tz = 

From this we obtain the equation 

3 l &.p (rt, Y) 
-= 
aya _l JQ=Y dt s ca,,=$+&) (1.5) 

-1 

+ r s’ ‘2 Jfmdt = ,. ’ a2w \ =1/1--dt 

of s, 
inte- 

under 

(r, 

This equation (1.5) shows that the operation Se-’ transforms the 
Laplacian in the plane into the Laplacian in space (in case of axial 
symmetry). The operation Se-’ accomplishes the inverse transformation. 

Harmonic functions are transformed into harmonic functions, and bi- 
harmonic ones into hiharmonic ones by means of these operations. In 
general, SO transforms the operator 

into the operator 

&,+i ‘R$ (CR = const) 
R==o 
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Let us transform Formulas (1.2) and (1.1) with the aid of the opera- 

tions Sg and Sl. We thus obtain the following formulas: 

The function O(X, y) is biharmonic in the xy-plane and can be con- 
sidered as the stress function of some planar state of stress whose com- 
ponents are found by means of the formulas 

In this notation Formulas 

1 

5x1/ 
o- 

- j$ Sl (u), 

or in complex notation 

(1 - 2u) (ox0 + QO) 

(1.7) 

(1.6) take on the form 

(1.8) 

i Q0 - iTq/ - 1 _t y ’ 0 o ~ -k [’ (2.) - is1 (u)] (1.9) 

Making use of the well-known representation of stresses by means of 
the two analytic functions of Kolosov-Muskhelishvili [ 2 I , we obtain 

(3 - 4v) [a, (2) + 0 (z)] f ZCD’ (z) + Y (z) =: + ” IS0 (u) - is1 (a)]. (1.10) 

In an analogous manner we find 

‘p (z) -I- (4~ - 2) y(z)+ z’p’ iz) + + (2) = - i ISO (0,) --is1 C-c,,)1 (1.11) 

(3-4~)(p(z)-~(4-44v)cp(z)-zcp’o~:-~= &[S1(~)-~So(‘~~] (1.12) 

Here 

‘p (z) = (I)’ (z), q (z) = Y’ (z) (z = 5 + iy) 

hrmulas (1.10) and (1.11) make it possible, for a certain class of 

problems, to reduce the solution of axially symmetric problems in elas- 

ticity theory to the solution of auxiliary problems in the planar theory 

of elasticity. One can solve in this manner fundamental problems (the 
problem with given stresses or displacements on the boundary of a region, 
the mixed problem in which the stresses are given on a part of the bound- 
ary and the displacements are given on the rest of the boundary) for the 
half-space, for a thick infinite plate, for space, for an infinite 

cylinder and others. 

Formulas (1.10) and (l.ll), or (1.11) and (1.12). can be used for the 
construction of the integral equations of the problem of elasticity 
theory of an arbitrary body of revolution if one knows the conformal 
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mapping of an axial cross-section of the body on to a half-plane. In this 
case one can determine the form of the functions @ (z) and \y (2). For 
example, for the exterior of the paraboloid r* = 2(y + 1) they take the 
form 

a (z) = 
1 

2ni(4v-3)(2i+ I/x) 

Here r is the parabola x2 = 2(y + 1) traced out from left to right. 

BY satisfying the boundary conditions, we derive the integral equa- 
tions for the determination of the real and imaginary parts of the func- 
tion f(o). 

2. Let us apply the 
of an infinite elastic 
y= 1. 

presented results to the solution of the problem 
plate situated between the planes y = -1 and 

Suppose that on the boundary of the plate we have the known stresses 

(2.1) 
or (r, 1) = fl (r), Try (r, 1) = gl (r): =? (r, - 1) = f2 (r). Try (r, - 1) = g2 (r) 

Let us make use of Equation (1.11). The right-hand side of this equa- 
tion is a known function when y = f 1; namely 

[SO(aJ-isl (Trg)lY=(-ll) '+l= %(fk) - is,(g,) (k=l, 2) 

Formula (1.11) thus makes it possible to reduce the problem of a plate 
to the boundary-value problem of the strip 1 y[ < 1 in the xy-plane. 

It is known that a function X(Z) which is analytic in the strip 
1 y 1 < 1 can be represented in the form X(Z) = x 1 (z) + x2 (z), where 
x1 (z) is analytic in the half-plane y < 1, while x2 (z) is analytic in 
the half-plane y > -1. 

Formula (1.11) can therefore be represented in the form 

-- 
‘PI(Z) + (4v - 2) 9 (2) + (2 - 1) ‘pl’ (z) + $1(z) + 

+ ‘pz (2) + (4v - 2) ‘pz (z) + (z + i) cpz’(z) + $2 (2) = --i[So (Q) - is1 (7ry)l (2.2) 

We note that the solution of the problems on the elastic half-spaces 
y < 1 and y > -1 can be reduced to the solution of the auxiliary problems 
in the half-planes y < 1 and y > 1. But these problems are easily solved. 
We shall seek &(z) and $k(~) in the same form in which they are obtained 
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in the solution of the mentioned auxiliary problems. They will have the 
form 

$$ij = - ‘9k (z) - (kv - 2, (p,$ bf - fz - (-- ‘)“+lil Tk’ (‘1 (k=1, 2) 

Substituting #*(E) and $*CZ) into (2.2) and making use of the bound- 
nry conditions (2.1) we obtain the system 

+=J 

Pl(Q i-F \ 
Pz(Q 8 I-~ 

[4+ (C --Et)212 dt + ii- li 

92 m (I;--- t) 

[4 + Qz-- t2j2 
dl: =-S,(a) 

--cx) --03 

[4 + (t - t)2]2 dc + 7 s 

41 (t;) (C -9 
[4 + (I _ t)2]” K= - Sl k2) 

--co 

4 i-co 
@2(0--~ s Ql Kd il; - v 8 -+03 

[4 + tr; - VI2 dt- y f 
--co --co 

Further developments will be omitted because they would be almost 
exact repetitions of 13 I in which there were solved problems in the 
theory of elasticity for an infinite strip. With the aid of the found 
Pk(c) and qk([) One finds @k(Z), $k’KfZ) and sO(Or), +jl(r ry)* By in- 
version one finds or and T 
tSrm3 Of @k(Z) and $k(Z). 

ry. The remaining components are expressed in 

The problem with given displacements on the boundary of a plate is 
solved by the same procedure. 

The preceding results can be applied to the solution of the mixed 
problem for a plate. This problem can be reduced to the finding of the 
stresses on segments where the displacements are known. One is hereby 
led to a system of singular integral equations with kernels of the Csuchy 
type. 
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